Indium Mineralization in a Sn-Poor Skarn Deposit: A Case Study of the Qibaoshan Deposit, South China

نویسندگان

  • Jianping Liu
  • Raymond M. Coveney
چکیده

Indium (In) is commonly hosted in Sn-rich deposits but rarely reported in Sn-poor deposits. However, an In-rich and Sn-poor skarn deposit, the Qibaoshan Cu-Zn-Pb deposit, has been identified in south China. Geochemical analyses were undertaken on 23 samples representing the following mineral assemblages: sphalerite-pyrite, pyrite-chalcopyrite, pyrite-sphalerite-galena-chalcopyrite, pyrite, magnetite-pyrite, and magnetite. The results show that In is richest in the sphalerite-pyrite ores, with concentrations of 28.9–203.0 ppm (average 122.8 ppm) and 1000 In/Zn values of 2.7–10.9 (average 7.0). Other ore types in the Qibaoshan deposit are In poor, whereas all are Sn poor (10 to 150 ppm), with most samples having Sn concentrations of ≤70 ppm. Indium is mainly hosted by sphalerite, as inferred from the strong correlation between In and Zn, and weak correlation between In and Sn. Mineral paragenetic relationships indicate sphalerite formed from late quartz-sulfide stage of mineralization processes. Indium in the Qibaoshan deposit is richer in vein-type orebodies than in lenticular-type orebodies occurring at contact zones between carbonate and quartz porphyry, or in carbonate xenoliths. Igneous intrusions that were Sn poor and emplaced at shallow depths formed the In-rich orebodies of the Qibaoshan deposit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mineralography, geochemistry and Sulfur isotope study in 16B magnetite mineralization anomaly, Bafgh, Yazd

Anomaly XVI-B located in Central Iran Structural Zone. The oldest rock formations in this study area are related to metamorphic rocks which are included gneiss, micaschist, amphibolite and megmatite. Mineralized intruded mass distinguished by alkaline diorite-syenite that cut Bonoshorow metamorphic complex and limestone units. Metallic mineralization is occurred in syenite, gabbro and skarn roc...

متن کامل

Precise Sm–Nd and U–Pb isotopic dating of the supergiant Shizhuyuan polymetallic deposit and its host granite, SE China

The supergiant Shizhuyuan W–Sn–Bi–Mo deposit is hosted by the Qianlishan granite, a small, highly fractionated granitic pluton (∼ 10 km) with multiple phases of intrusions within the Early Yanshanian granitoid province of SE China. Strong alteration of skarn and greisen that formed in the contact zone between the first and second phases of granite intrusions and Devonian limestone is responsibl...

متن کامل

Geostatistical and multi-fractal modeling of geological and geophysical characteristics in Ghalandar Skarn-Porphyry Cu Deposit, Iran

This work aims at figuring out the spatial relationships between the geophysical and geological models in a case study pertaining to copper-sulfide mineralization through an integrated 3D analysis of favorable target. The Ghalandar Skarn-Porphyry Cu Deposit, which is located in NW Iran, is selected for this research work. Three geophysical surveys of direct current electrical resistivity and in...

متن کامل

Geochemical Distribution of Heavy Metals and Assessment of Environmental Indicators in Chah-Shaljami Polymetal Ore deposit, South of Birjand, Iran

The Chah-Shaljami polymetal ore deposit contains heavy metal anomalies in various mineralization zones. Geochemical distribution and correlation of elements in surficial soilsindicate that sulfide, sulfate, sulfosalt and silicate mineral occurrences (e.g. Pyrite, chalcopyrite, galena, sphalerite, molybdenite, enargite, hornblend and biotite) in mineralization and stockwork zones resulted in the...

متن کامل

Mineral chemistry of magnetite and fluid inclusions studies in the Kuh-Baba iron deposit, south of Hashtroud, NW Iran

The Kuh-Baba iron ore deposit is located about 70 km south of Hashtroud, East-Azarbaidjan Province, NW Iran. The deposit is genetically affiliated with intrusive bodies of gabbroic to dioritic composition. The principal host rocks for the Fe mineralization include units of gabbro-norite and pyroxene hornblende gabbro-norite. The widespread alteration zones which are accompanied with Fe-minerali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017